Exam

Name___________________________________

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Provide an appropriate response.

1) Find all the critical values of \(y = x^3 - x^2 - x + 2 \).

2) Find all the critical values of \(f(x) = x^4 - 8x^2 + 3 \).

3) If \(f(x) = 2x^3 + 3x^2 - 36x + 1 \), determine the intervals on which \(f \) is increasing and the intervals on which \(f \) is decreasing.

4) If \(f(x) = \frac{x^4}{4} - \frac{2x^3}{3} \), determine the intervals on which \(f \) is increasing and the intervals on which \(f \) is decreasing.

5) Let \(f(x) = \frac{x^4}{4} + \frac{x^3}{3} - x^2 \). Determine the intervals on which \(f \) is

(a) Determine the intervals on which \(f \) is increasing.
(b) Determine the intervals on which \(f \) is decreasing.
(c) Based on your answers to parts (a) and (b), find the values of \(x \) for which \(f \) has relative maxima.
(d) Based on your answers to parts (a) and (b), find the values of \(x \) for which \(f \) has relative minima.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

6) The function \(y = x^3 + 15x^2 - 33x \) has a relative maximum when \(x = \)

A) 11 \hspace{1cm} B) 1 \hspace{1cm} C) -1 \hspace{1cm} D) 0 \hspace{1cm} E) -11

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

7) Find all the critical values of \(f(x) = x^8 - 2x^4 \).

8) Determine the intervals on which the function is increasing and on which it is decreasing. Also determine the points of relative maxima and relative minima.

\(f(x) = 16x^5 - 5x \)

9) Let \(f(x) = 3x^5 - 10x^4 + 7x \). Determine the intervals on which \(f \) is (a) concave up and (b) concave down.

(c) Find the \(x \)-values of all inflection points.

10) Let \(f(x) = x^5 + 5x^3 \). Determine the intervals of which \(f \) is (a) concave up and (b) concave down. (c) Find the \(x \)-values of all inflection points.

11) If \(y = x^4 + 4x^3 - 18x^2 - 3x + 4 \), find the \(x \)-values of all inflection points.
12) Let \(y = x^3 - 3x^2 - 9x + 10 \).
 (a) Determine \(y' \) and \(y'' \).
 (b) Determine intervals on which the function is increasing; determine intervals on which the function is decreasing.
 (c) Determine the coordinates of all relative maximum and relative minimum points.
 (d) Determine intervals on which the function is concave up; determine intervals on which the function is concave down.
 (e) Determine the coordinates of all inflection points.
 (f) With the aid of the information obtained in parts (a)–(e), give a reasonable sketch of the curve.

13) If \(y = 3x^4 - 6x^2 \), use the second-derivative test to find all values of \(x \) for which (a) relative maxima occur (b) relative minima occur.

14) If \(y = x^3 + 4x^2 - 3x + 4 \), use the second-derivative test to find all values of \(x \) for which (a) relative maxima occur (b) relative minima occur.

15) Use the second derivative test to find the points of relative maxima and relative minima for the function \(y = \frac{x^4}{2} - 2x^3 + 5 \).

16) Find the absolute extrema for \(y = x^3 + x^2 - 3x + 7 \) on the interval \([0, 3]\) and where they occur.