Q1) a) Let S be a set of polynomials in $P(F)$, such that no two have the same degree. Is S linearly independent? Justify your answer.

b) Find two spanning sets for the set of all 3×3 symmetric matrices.

Q2) A square matrix is called skew-symmetric if $A^T = -A$. Let W be the set of all $n \times n$ skew-symmetric matrices. Show that W is a subspace of $M_{nn}(F)$. Find a basis for W. What is the dimension of W?

Q3) Prove the following corollary of the replacement theorem:

Let V be a vector space with dimension n. Any finite spanning set for V contains at least n vectors, and a spanning set for V that contains exactly n vectors is a basis for V. (Hint: Start the proof by showing that finite spanning sets can always be reduced down to a basis.)