1. 3 fair coins are tossed. Let X denote the number of heads, and Y denote the 'number of heads' minus 'number of tails'. Find the joint probability distribution of X and Y, with marginal distributions.

2. A fair coin is tossed 3 times. Let X denote number of heads, and Y denote

\[Y = \begin{cases} 0, & \text{if first toss is tail} \\ 1, & \text{if first toss is head} \end{cases} \]

Determine the joint distribution of X and Y, with marginal distributions.

3. A pair of dice is tossed. Let $X(a,b) = \max(a,b)$ and $Y(a,b) = a + b$. Determine the joint distribution of X and Y, with marginal distributions.

4. Suppose that X and Y have the following discrete joint probability distribution.

<table>
<thead>
<tr>
<th>$Y(S)$</th>
<th>$X(S)$</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.10</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
<td>0.15</td>
<td></td>
</tr>
</tbody>
</table>

Find the
a) marginal distributions for X and Y.
b) joint expectation of X and Y.
c) covariance of X and Y.
d) correlation of X and Y, and identify it.
e) expectation of $E(2X - 3Y + 1)$.

5. Given the following discrete joint distribution of X and Y.

<table>
<thead>
<tr>
<th>$Y(S)$</th>
<th>$X(S)$</th>
<th>-4</th>
<th>2</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/8</td>
<td>1/4</td>
<td>1/8</td>
<td>1/2</td>
</tr>
<tr>
<td>5</td>
<td>1/4</td>
<td>1/8</td>
<td>1/8</td>
<td>1/2</td>
</tr>
</tbody>
</table>
g(y_j) 3/8 3/8 1/4 1

Find the
a) expectation of X; $E(X)$.
b) expectation of Y; $E(Y)$.
c) joint expectation of X and Y; $E(XY)$.
d) covariance of X and Y; $\text{cov}(X,Y)$.
e) correlation of X and Y; $\rho(X,Y)$, and identify it.

6. Given the following discrete joint distribution of X and Y.

<table>
<thead>
<tr>
<th>$Y(S)$</th>
<th>$X(S)$</th>
<th>-2</th>
<th>-1</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>0.2</td>
<td>0</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.1</td>
<td>k</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

a) Evaluate k. b) Find $P(Y < 4)$.
c) Find $P(X + Y < 3)$.
d) Find the expectation of X; $E(X)$.
e) Find the expectation of Y; $E(Y)$.
f) Find the joint expectation of X and Y; $E(XY)$.
g) Find the variance of X; σ^2_X.
h) Find the variance of Y; σ^2_Y.
i) Find the covariance of X and Y; $\text{cov}(X,Y)$.
j) Find the correlation of X and Y; $\rho(X,Y)$, and identify it.
k) Determine whether X and Y are independent or not.

7. Given the following discrete joint probability distribution

\[h(x,y) = \frac{x + y}{30}, \text{for } x = 0,1,2,3 \text{ and } y = 0,1,2. \]

Find
a) $P(X \leq 2, Y = 1)$. b) $P(X > 2, Y \leq 1)$. c) $P(X + Y = 4)$ d) $P(Y < X)$.

8. Suppose X and Y are two independent discrete random variables with the following distributions:

<table>
<thead>
<tr>
<th>x_i</th>
<th>$f(x_i)$</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y_j</th>
<th>$g(y_j)$</th>
<th>-2</th>
<th>5</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.3</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>

a) Construct the joint distribution of X and Y; $h(x_i,y_j)$, with marginal distributions.
b) Show that $\text{cov}(X,Y) = 0$.

9. 2 cards are selected at random from a box which contains five cards numbered 1, 1, 2, 2 and 3. Let $X(a,b) = \max(a,b)$ and $Y(a,b) = a + b$.

a) Determine the joint distribution of X and Y, with marginal distributions.
b) Find the joint expectation of X and Y; $E(XY)$.
c) Find the covariance of X and Y; $\text{cov}(X,Y)$.
d) Find the correlation coefficient of X and Y; $\rho(X,Y)$, and identify it.
10. Let X and Y be two discrete random variables having the following joint probability distribution

<table>
<thead>
<tr>
<th>$Y(\mathbf{s})$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>$f(x_i)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(\mathbf{s})$</td>
<td>1</td>
<td>0.05</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.05</td>
<td>0.10</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>$g(y_j)$</td>
<td>0.10</td>
<td>0.35</td>
<td>0.55</td>
<td>1</td>
</tr>
</tbody>
</table>

a) Determine whether X and Y are independent or not.
b) Find $P(X + Y = 4)$.
c) Find $P(X \leq 2; Y \geq 2)$.
d) Find $P(X < Y)$.

e) Find the marginal density of X.
f) Find the marginal density of Y.
g) Find the expectation of X.
h) Find the expectation of Y.
i) Find the joint expectation of X and Y.
j) Find the covariance of X and Y; $\text{cov}(X, Y)$.
k) Find the correlation of X and Y; $\rho(X, Y)$, and identify it.

11. A box contains 3 oranges, 2 apples and 3 bananas. A sample of 4 pieces of fruit is selected at random. If X is the the number of oranges and Y is the number of apples;
a) find the joint probability distribution of X and Y.
b) find $P(X + Y \leq 2)$.

c) Find $P(X \geq 2)$.

d) Let X be the number of kings, and Y the number of jacks.
a) Construct the joint probability distribution of X and Y.
b) Find the marginal distributions of X and Y.
c) Find $P(X + Y \geq 2)$.

12. 3 cards are selected at random from 12 faced cards ((jacks, queens and kings) of an ordinary deck of 52 playing cards. Let X be the number of kings, and Y number of jacks.
a) Construct the joint probability distribution of X and Y.
b) Find the marginal distributions of X and Y.
c) Find $P(X + Y \geq 2)$.

13. Let X and Y be two continuous random variables with the following joint density;

$$h(x, y) = \begin{cases}
 kxy, & 0 < x < 1 \text{ and } 0 < y < 1 \\
 0, & \text{ elsewhere}
\end{cases}$$

a) Evaluate k.
b) Find $P(X < 2/3; Y > 3/4)$.
c) Find $P(1/4 < X < 1/2; 1/2 < Y < 3/4)$.

14. Let X and Y be two continuous random variables with the following joint density;

$$h(x, y) = \begin{cases}
 k(x+2y), & 0 < x < 1 \text{ and } 0 < y < 1 \\
 0, & \text{ elsewhere}
\end{cases}$$

a) Evaluate k.
b) Find $P(X < 1/2; Y > 1/2)$.
c) Find the marginal density of X.
d) Find the marginal density of Y.
e) Find the expectation of X; $E(X)$.
f) Find the expectation of Y; $E(Y)$.
g) Find the joint expectation of X and Y; $E(XY)$.
h) Find the covariance of X and Y; $\text{cov}(X, Y)$.
i) Find the correlation of X and Y; $\rho(X, Y)$, and identify it.

15. Let X and Y be two continuous random variables with the following joint density;

$$h(x, y) = \begin{cases}
 1, & 0 < x < y < 1 \\
 y, & \text{ elsewhere}
\end{cases}$$

Find
a) $P(X > 1/2; Y < 3/4)$.
b) $P(X + Y > 1/2)$.
c) the marginal distribution of X.
d) the marginal distribution of Y.
e) the expectation of X; $E(X)$.
f) the expectation of Y; $E(Y)$.
g) the joint expectation of X and Y; $E(XY)$.
h) the covariance of X and Y; $\text{cov}(X, Y)$.

16. Let X and Y be two continuous random variables with the following joint density;

$$h(x, y) = \begin{cases}
 \frac{24}{7}xy, & 0 < x < 1; 0 < y < 1 \text{ and } x + y < 1 \\
 0, & \text{ elsewhere}
\end{cases}$$

Find
a) $E(X+Y)$
b) $E(X - Y)$
c) $E(XY)$

17. Let X and Y be two continuous random variables with the following joint density;

$$h(x, y) = \begin{cases}
 \frac{2}{7}(x+y), & 0 < x < 1; 1 < y < 2 \\
 0, & \text{ elsewhere}
\end{cases}$$

Find
a) $E(X+Y)$
b) $E(X - Y)$
c) $E(XY)$

18. Let X and Y be two continuous random variables with the following joint density;

$$h(x, y) = \begin{cases}
 2, & 0 < x < y < 1 \\
 0, & \text{ elsewhere}
\end{cases}$$

Find
a) $E(X+Y)$
b) $E(X - Y)$
c) $E(XY)$

19. Let X and Y be two continuous random variables with the following joint density;

$$h(x, y) = \begin{cases}
 e^{-(x+y)}, & x > 0, y > 0 \\
 0, & \text{ elsewhere}
\end{cases}$$

Find
a) $E(X+Y)$
b) $E(X - Y)$
c) $E(XY)$

Math322 – Probability and Statistical Methods; Problem Set: 4