CALCULUS I TUTORIAL II

1.3 Limits at infinity

Q1)
Find the limit. (Hint: Treat the expression as a fraction whose denominator is 1, and rationalize the numerator.) Use a graphing utility to verify your result.

\[\lim_{x \to -\infty} \left(x + \sqrt{x^2 + 3} \right) \]

1. \[\lim_{x \to -\infty} \left(x + \sqrt{x^2 + 3} \right) = \lim_{x \to -\infty} \left[x + \sqrt{x^2 + 3} \right] \cdot \frac{x - \sqrt{x^2 + 3}}{x - \sqrt{x^2 + 3}} \]

2. \[= \lim_{x \to -\infty} \frac{-3}{x - \sqrt{x^2 + 3}} \]

3. \[= 0 \]

Q2)

Find the limit. (Hint: Treat the expression as a fraction whose denominator is 1, and rationalize the numerator.) Use a graphing utility to verify your result.

\[\lim_{x \to -\infty} (x - \sqrt{x^2 + x}) \]

1. \[\lim_{x \to -\infty} (x - \sqrt{x^2 + x}) = \lim_{x \to -\infty} \left[x - \sqrt{x^2 + x} \right] \cdot \frac{x + \sqrt{x^2 + x}}{x + \sqrt{x^2 + x}} \]

2. \[= \lim_{x \to -\infty} \frac{-x}{x + \sqrt{x^2 + x}} \]

3. \[= \lim_{x \to -\infty} \frac{-1}{1 + \sqrt{1 + (1/x)}} \]

4. \[= \frac{1}{2} \]

Q3)

Find the limit.

\[\lim_{x \to -\infty} \frac{2x^2}{3x^2 + 5} \]

1. \[\lim_{x \to -\infty} \frac{2x^2}{3x^2 + 5} = \lim_{x \to -\infty} \frac{2}{3 + (5/x^2)} \]

2. \[= \frac{2}{3} \]

Q4) Evaluate the following limits

a) \[\lim_{x \to -\infty} \frac{x - 2}{x^2 + 2x + 1} \]

b) \[\lim_{x \to -\infty} \frac{3x + 1}{2x - 5} \]

\[\lim_{x \to -\infty} \frac{x - 2}{x^2 + 2x + 1} = \frac{1/2}{1 + 1/(1/x)} = 0 \]

b) \[\lim_{x \to -\infty} \frac{3x + 1}{2x - 5} = \lim_{x \to -\infty} \frac{x \left(\frac{3 + 1}{x} \right)}{x \left(\frac{2 - 5}{x} \right)} = \frac{3}{2} \]

Q5)

a. Find the horizontal asymptote(s) of

\[f(x) = \frac{x + x^3 + 4x^5}{1 + x^2 - x^3} \]

\[\lim_{x \to \infty} x + x^3 + 4x^5 = \lim_{x \to \infty} x^5 \left(\frac{1/x^5 + 1/x^3 + 4}{1/x^5 + 1/x^3 - 1} \right) = -4 \]

also

\[\lim_{x \to -\infty} x + x^3 + 4x^5 = \lim_{x \to -\infty} x^5 \left(\frac{1/x^5 + 1/x^3 + 4}{1/x^5 + 1/x^3 - 1} \right) = -4 \]

so \[y = -4 \]

Is two sided horizontal asymptote.

b. Find the vertical asymptote(s) of

\[f(x) = \frac{1 - x^2}{x - x^2} \]

\[f(x) = \frac{1 - x^2}{x - x^2} \text{ is not defined at } x = 0 \text{ and } x = 1 \]
\[
\lim_{x \to a} \frac{1-x^2}{x-x^2} = \lim_{x \to a} \frac{(1-x)(1+x)}{x(1-x)} = \lim_{x \to a} \frac{1+x}{x} = -\infty
\]

\[
\lim_{x \to a} \frac{1-x^2}{x-x^2} = \lim_{x \to a} \frac{(1-x)(1+x)}{x(1-x)} = \lim_{x \to a} \frac{1+x}{x} = \infty
\]

so \(x = 0 \) is two sided vertical asymptote

\[
\lim_{x \to 1} \frac{1-x^2}{x-x^2} = \lim_{x \to 1} \frac{(1-x)(1+x)}{x(1-x)} = \lim_{x \to 1} \frac{1+x}{x} = 2
\]

therefore \(x = 1 \) is not a vertical asymptote.

1.5 Continuity

Q6)

Verify that the Intermediate Value Theorem applies to the indicated interval and find the value of \(c \) guaranteed by the theorem.

\[f(x) = x^2 + x - 1, \quad [0, 5], \quad f(c) = 11 \]

1. \(f(x) = x^2 + x - 1 \)
2. \(f \) is continuous on \([0, 5]\).
3. \(f(0) = -1 \)
4. and \(f(5) = 29 \)
5. \(-1 < 11 < 29 \)
6. The Intermediate Value Theorem applies.
7. \(x^2 + x - 1 = 11 \)
8. \(x^2 + x = 12 = 0 \)
9. \(x + 10(x - 3) = 0 \)
10. \(x = -4 \)
11. or \(x = 3 \)
12. \(c = 3 \) (\(x = -4 \) is not in the interval.)
13. Thus, \(f(3) = 11 \).

Q7) Show that \(f(x) = x^x + 8x - 1 \) has a zero that is \(x^5 + 8x - 1 = 0 \) has a root in the interval \([0,1]\) by using Intermediate Value Theorem

\[f(x) = x^x + 8x - 1 \] is continuous on \([0,1]\) and \(f(0) = -1, f(1) = 8 \). Since \(f \) is continuous on \([0,1]\) and \(-1 < 0 < 8 \) according to Intermediate Value Theorem there exist at least one number \(c \) in the interval \([0,1]\) such that \(f(c) = c^5 + 8c - 1 = 0 \) which the number \(c \) is the root of the given equation.

Find the constant \(a \), or the constants \(a \) and \(b \), such that the function is continuous on the entire real line.

\[f(x) = \begin{cases} 2, & x \leq -1 \\ ax + b, & -1 < x < 3 \\ -2, & x \geq 3 \end{cases} \]

1. Find \(a \) and \(b \) such that
 \[\lim_{x \to -1^+} (ax + b) = -a + b = 2 \text{ and } \lim_{x \to -1^-} (ax + b) = 3a + b = -2. \]
2. \(a - b = -2 \)
3. \((a) 3a + b = -2 \)
4. \(4a = -4 \)
5. \(a = -1 \)
6. \(b = 2 + (-1) = 1 \)

Q8)

Find the \(x \)-values (if any) at which \(f \) is not continuous. Which of the discontinuities are removable?

\[f(x) = \frac{x + 2}{x^2 - 3x - 10} \]

1. \(f(x) = \frac{x + 2}{(x + 2)(x - 5)} \) has a nonremovable discontinuity at \(x = 5 \)
2. since \(\lim_{x \to 5} f(x) \) does not exist
3. and has a removable discontinuity at \(x = -2 \)
4. since \(\lim_{x \to -2} f(x) = \lim_{x \to -2} \frac{1}{x - 5} \)
5. \(= -\frac{1}{7} \)}
Q10)

Determine the intervals on which the function is continuous.

\[f(x) = \begin{cases} \frac{3x^2 - x - 2}{x - 1}, & x \neq 1 \\ 0, & x = 1 \end{cases} \]

1. \(f(x) = \frac{3x^2 - x - 2}{x - 1} \)
2. \(\frac{(3x + 2)(x - 1)}{x - 1} = 3x + 2 \)
3. \(\lim_{x \to 1} f(x) = \lim_{x \to 1} (3x + 2) \)
4. \(= 5 \)
5. Removable discontinuity at \(x = 1 \)
6. Continuous on \((-\infty, 1) \cup (1, \infty) \)

Q11)

Determine the value of \(c \) such that the function is continuous on the entire real line.

\[f(x) = \begin{cases} x + 3, & x \leq 2 \\ cx + 6, & x > 2 \end{cases} \]

1. \(f(2) = 5 \)
2. Find \(c \) so that \(\lim_{x \to 2} (cx + 6) = 5 \).
3. \(c(2) + 6 = 5 \)
4. \(2c = -1 \)
5. \(c = -\frac{1}{2} \)

Q12)

Find the \(x \)-values (if any) at which \(f \) is not continuous. Which of the discontinuities are removable?

\(f(x) = \begin{cases} \frac{1}{2}x + 1, & x \leq 2 \\ 3 - x, & x > 2 \end{cases} \)

1. \(f(x) = \frac{1}{2}x + 1 \) has a possible discontinuity at \(x = 2 \).
2. \(f(2) = \frac{1}{2}(2) + 1 = 2 \)
3. \(\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} (\frac{1}{2}x + 1) = 2 \)
4. Therefore, \(f \) has a nonremovable discontinuity at \(x = 2 \).

This is jump type discontinuity.

1.6 Continuity of Trigonometric, Exponential and Inverse Functions

Q13)

Use the Squeeze Theorem to find \(\lim_{x \to \pi/2} f(x) \).

\[c = 0, \ 4 - x^2 \leq f(x) \leq 4 + x^2 \]

1. \(\lim_{x \to \pi/2} (4 - x^2) \leq \lim_{x \to \pi/2} f(x) \leq \lim_{x \to \pi/2} (4 + x^2) \)
2. \(4 \leq \lim_{x \to \pi/2} f(x) \leq 4 \)
3. Therefore, \(\lim_{x \to \pi/2} f(x) = 4 \).

Q14)

Find the limit of the trigonometric function.

\[\lim_{x \to 0} \frac{\sin 2x}{2x} \]

1. \(\lim_{x \to 0} 2x = \sin 0 \)
2. \(= 1 \)

Q15)

Find the limit of the trigonometric function.

\[\lim_{x \to \pi/2} \sin x \]

1. \(\lim_{x \to \pi/2} \sin x = \sin \frac{\pi}{2} \)
2. \(= 1 \)
Q16)

Use a graphing utility to graph the function and estimate the limit. Use a table to reinforce your conclusion. Then find the limit by analytic methods.

\[
\lim_{\theta \to 0} \frac{\sin 3\theta}{\theta}
\]

1. \(f(\theta) = \frac{\sin 3\theta}{\theta} \)

2.

3. | \(\theta \) | -0.1 | -0.01 | -0.001 | 0 | 0.001 | 0.01 | 0.1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(\theta))</td>
<td>2.96</td>
<td>2.9996</td>
<td>3</td>
<td>?</td>
<td>3</td>
<td>2.9996</td>
<td>2.96</td>
</tr>
</tbody>
</table>

4. The limit appears to equal 3.

5. Analytically, \(\lim_{\theta \to 0} \frac{\sin 3\theta}{\theta} = 3 \lim_{\theta \to 0} \left(\frac{\sin 3\theta}{3\theta} \right) \)

6. = 3(1)

7. = 3.

Q17)

Use a graphing utility to graph the function and estimate the limit. Use a table to reinforce your conclusion. Then find the limit by analytic methods.

\[
\lim_{x \to 0} \frac{\sin x^2}{x}
\]

1. \(f(x) = \frac{\sin x^2}{x} \)

2.

3. | \(x \) | -0.1 | -0.01 | -0.001 | 0 | 0.001 | 0.01 | 0.1 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x))</td>
<td>-0.00998</td>
<td>-0.01</td>
<td>-0.0001</td>
<td>?</td>
<td>0.001</td>
<td>0.01</td>
<td>0.00998</td>
</tr>
</tbody>
</table>

4. Analytically, \(\lim_{x \to 0} \frac{\sin x^2}{x} = \lim_{x \to 0} \left(\frac{\sin x^2}{x^2} \right) \)

5. = 0(1)

6. = 0.

Q18)

Determine the limit of the trigonometric function (if it exists).

\[
\lim_{h \to 0} \frac{(1 - \cos h)^2}{h}
\]

1. \(\lim_{h \to 0} \frac{(1 - \cos h)^2}{h} = \lim_{h \to 0} \left[\frac{1 - \cos h}{h} \right] \left(1 - \cos h \right) \)

2. = (0)(0)

3. = 0

Q19)

Determine the limit of the trigonometric function (if it exists).

\[
\lim_{x \to 0} \frac{\sin x (1 - \cos x)}{2x^2}
\]

1. \(\lim_{x \to 0} \frac{\sin x (1 - \cos x)}{2x^2} = \lim_{x \to 0} \left[\frac{1}{2} \cdot \frac{\sin x}{x} \cdot \frac{1 - \cos x}{x} \right] \)

2. = \(\frac{1}{2}(1)(0) \)

3. = 0