Analysis of Functions

Question 1. For the function \(f(x) = 2x^3 + 3x^2 - 12x \)

a) Find the critical points (if exist) and their nature

\[f'(x) = 6x^2 + 6x - 12 \]

let \(f'(x) = 0 \)

\[\Rightarrow 6(x^2 + x - 2) = 0 \]

\[\Rightarrow 6(x + 2)(x - 1) = 0 \]

\[\Rightarrow x = 1, x = -2 \] are critical values

and \(f'(x) \) is defined for all \(x \in \mathbb{R} \)

\[
\begin{array}{|c|c|c|c|}
\hline
& -\infty < x < -2 & -2 < x < 1 & 1 < x < \infty \\
\hline
f''(x) = 6x^2 + 6x - 12 & + & - & + \\
\hline
f(x) = 2x^3 + 3x^2 - 12x & Inc. & Dec. & Inc. \\
\hline
\end{array}
\]

Local (Relative) maximum occurs at \(x = -2 \) and \(f(-2) = 2(-2)^3 + 3(-2)^2 - 12(-2) = 20 \)

Local (Relative) minimum occurs at \(x = 1 \) and \(f(1) = 2(1)^3 + 3(1)^2 - 12(1) = -7 \)

b) Write down the increasing and decreasing intervals

\(f(x) \) increases on \((-\infty, -2) \cup (1, \infty) \) and decreases on \((-2, 1) \)

c) Find the inflection points (if exist)

\[f''(x) = 12x + 6 \] let \(f''(x) = 0 \Rightarrow 12x = -6 \Rightarrow x = -\frac{1}{2} \)

\[f\left(-\frac{1}{2}\right) = 2\left(-\frac{1}{2}\right)^3 + 3\left(-\frac{1}{2}\right)^2 - 12\left(-\frac{1}{2}\right) \]

\[= \frac{13}{2} \Rightarrow \left(-\frac{1}{2}, \frac{13}{2}\right) \]

is an inflection point since the concavity is opposite before and after this point.
d) Write down the concave up and concave down intervals

\[f'(x) \text{ is concave up on } \left(-\frac{1}{2}, \infty \right) \text{ and concave down on } \left(-\infty, -\frac{1}{2} \right) \text{ as shown in the figure.} \]

<table>
<thead>
<tr>
<th>(f''(x) = 12x + 6)</th>
<th>(-\infty < x < -\frac{1}{2})</th>
<th>(-\frac{1}{2} < x < \infty)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f(x) = 2x^3 + 3x^2 - 12x)</td>
<td>(\cap) (concave down)</td>
<td>(\cup) (concave up)</td>
</tr>
</tbody>
</table>

Question 2

Find all relative extrema. Use the Second Derivative Test where applicable.

\[f(x) = x^4 - 4x^3 + 2 \]

1. \(f'(x) = 4x^3 - 12x^2 \)
2. \(f''(x) = 4x^2(x - 3) \)
3. \(f''(x) = 12x^2 - 24x \)
4. \(f''(x) = 12x(x - 2) \)
5. Critical numbers: \(x = 0, x = 3 \)
6. However, \(f''(0) = 0 \), so we must use the First Derivative Test.
7. \(f'(x) < 0 \) on the intervals \((-\infty, 0)\) and \((0, 3)\); hence, \((0, 2)\) is not an extremum.
8. \(f''(3) > 0 \) so \((3, -25)\) is a relative minimum.

Question 3

Find all relative extrema. Use the Second Derivative Test where applicable.

\[f(x) = x + \frac{4}{x} \]

1. \(f'(x) = 1 - \frac{4}{x^2} \)
2. \(f''(x) = \frac{x^2 - 4}{x^2} \)
3. \(f''(x) = \frac{8}{x^3} \)
4. Critical numbers: \(x = \pm 2 \)
5. \(f''(-2) < 0 \)
6. Therefore, \((-2, -4)\) is a relative maximum.
7. \(f''(2) > 0 \)
8. Therefore, \((2, 4)\) is a relative minimum.
Question 4

Find the points of inflection and discuss the concavity of the graph of the function.

\(f(x) = x^3 - 6x^2 + 12x \)

1. \(f'(x) = 3x^2 - 12x + 12 \)
2. \(f''(x) = 6(x - 2) \)
3. \(= 0 \) when \(x = 2 \).
4. The concavity changes at \(x = 2 \).
5. \((2, 8)\) is a point of inflection.
6. Concave upward: \((2, \infty)\)
7. Concave downward: \((-\infty, 2)\)

Question 5

Find the points of inflection and discuss the concavity of the graph of the function.

\(f(x) = \frac{1}{4}x^4 - 2x^2 \)

1. \(f'(x) = x^3 - 4x \)
2. \(f''(x) = 3x^2 - 4 \)
3. \(= 0 \) when \(x = \pm \frac{2}{\sqrt{3}} \).
4. Test interval: \(-\infty < x < -\frac{2}{\sqrt{3}}\), \(-\frac{2}{\sqrt{3}} < x < \frac{2}{\sqrt{3}}\), \(\frac{2}{\sqrt{3}} < x < \infty\)

 Sign of \(f''(x) \):

 - \(f''(x) > 0 \)
 - \(f''(x) < 0 \)
 - \(f''(x) > 0 \)

 Conclusion: Concave upward, Concave downward, Concave upward

5. Points of inflection: \(\left(\frac{2}{\sqrt{3}}, \frac{20}{9} \right) \)

Question 6

Find the points of inflection and discuss the concavity of the graph of the function.

\(f(x) = 3(x - 4)^3 \)

1. \(f'(x) = 9(x - 4)^2 \)
2. \(= 3(x - 4)^2 \)
3. \(f''(x) = 4(x - 4)(3(x - 4)) \)
4. \(= 4(x - 4)(x - 1) \)
5. \(= 4(x - 4)(3x - 6) \)
6. \(= 12(x - 4)(x - 2) \)
7. \(f''(x) = 12(x - 4)(x - 2) \)
8. \(= 0 \) when \(x = 2, 4 \).
9. Test interval: \(-\infty < x < 2\), \(2 < x < 4\), \(4 < x < \infty\)

 Sign of \(f''(x) \):

 - \(f''(x) > 0 \)
 - \(f''(x) < 0 \)
 - \(f''(x) > 0 \)

 Conclusion: Concave upward, Concave downward, Concave upward

10. Points of inflection: \((2, -16), (4, 0)\)
Question 7

Analyze and sketch a graph of the function. Label any intercepts, relative extrema, points of inflection, and asymptotes. Use a graphing utility to verify your results.

\[y = x^3 - 3x^2 + 3 \]

1. \[y' = 3x^2 - 6x \]
2. \[y'' = 6x - 6 \]
3. \[y'' = 0 \] when \[x = 0, x = 2 \].
4. \[y'' = 6(x - 1) \]
5. \[y'' = 0 \] when \[x = 1 \].

<table>
<thead>
<tr>
<th>Condition</th>
<th>y'</th>
<th>y''</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x < 0]</td>
<td>+</td>
<td>-</td>
<td>Increasing, concave down</td>
</tr>
<tr>
<td>[x = 0]</td>
<td>3</td>
<td>0</td>
<td>Relative maximum</td>
</tr>
<tr>
<td>[0 < x < 1]</td>
<td>-</td>
<td>-</td>
<td>Decreasing, concave down</td>
</tr>
<tr>
<td>[x = 1]</td>
<td>1</td>
<td>0</td>
<td>Point of inflection</td>
</tr>
<tr>
<td>[1 < x < 2]</td>
<td>-</td>
<td>+</td>
<td>Decreasing, concave up</td>
</tr>
<tr>
<td>[x = 2]</td>
<td>-1</td>
<td>0</td>
<td>Relative minimum</td>
</tr>
<tr>
<td>[2 < x < \infty]</td>
<td>+</td>
<td>+</td>
<td>Increasing, concave up</td>
</tr>
</tbody>
</table>

Question 8

Analyze and sketch a graph of the function. Label any intercepts, relative extrema, points of inflection, and asymptotes. Use a graphing utility to verify your results.

\[f(x) = \frac{x^2 + 1}{x} \]

1. \[f'(x) = \frac{1}{x} \]
2. \[f''(x) = 1 - \frac{1}{x^2} \]
3. \[f''(x) = 0 \] when \[x = \pm 1 \].
4. \[f''(x) = \frac{2}{x^3} \neq 0 \]
5. Relative maximum: \((1, 2) \)
6. Relative minimum: \((1, 2) \)
7. Vertical asymptote: \[x = 0 \]
8. Slant asymptote: \[y = x \]
9.

![Graph of f(x) = x^2 + 1/x]
Question 9

Analyze and sketch a graph of the function. Label any intercepts, relative extrema, points of inflection, and asymptotes. Use a graphing utility to verify your results.

\[y = \frac{x^2}{x^2 + 3} \]

1. \[y' = \frac{6x}{(x^2 + 3)^2} \]

2. \[= 0 \text{ when } x = 0. \]

3. \[y'' = \frac{18(1 - x^2)}{(x^2 + 3)^3} \]

4. \[= 0 \text{ when } x = \pm 1. \]

5. **Horizontal asymptote:** \(y = 1 \)

6. | \(x \) | \(y' \) | \(y'' \) | Conclusion |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(-\infty < x < -1)</td>
<td>-</td>
<td>-</td>
<td>Decreasing, concave down</td>
</tr>
<tr>
<td>(x = -1)</td>
<td>(\frac{1}{3})</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>(-1 < x < 0)</td>
<td>-</td>
<td>+</td>
<td>Decreasing, concave up</td>
</tr>
<tr>
<td>(x = 0)</td>
<td>0</td>
<td>0</td>
<td>+</td>
</tr>
<tr>
<td>(0 < x < 1)</td>
<td>+</td>
<td>+</td>
<td>Increasing, concave up</td>
</tr>
<tr>
<td>(x = 1)</td>
<td>(\frac{1}{3})</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>(1 < x < \infty)</td>
<td>+</td>
<td>-</td>
<td>Increasing, concave down</td>
</tr>
</tbody>
</table>

7. [Graph of the function showing key points and behaviors]