Chapter 4 Mathematical Expectation

Mean of a Random Variable

Definition. Let X be a random variable with probability distribution $f(x)$. The mean or expected value of X is,

$$
\mu = \mu_x = E(x) = \sum_{all\ x} xf(x), \text{ if } X \text{ is a discrete random variable}
$$

$$
\mu = \mu_x = E(x) = \int_{-\infty}^{\infty} xf(x) dx, \text{ if } X \text{ is a continuous random variable}
$$

Example 1. A coin is biased so that a head is three times as likely to occur as a tail. Find the expected number of tails when this coin is tossed twice.

$$
P(T) + P(H) = 1; \ P(T) + 3P(T) = 1 \Rightarrow P(T) = \frac{1}{4} \text{ and } P(H) = \frac{3}{4}.
$$

x: number of tails; $x: 0, 1, 2$ and the corresponding probabilities are

$$
f(0) = P(HH) = P(H)P(H) = \frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16}
$$

$$
f(1) = P(TH) + P(HT) = \frac{1}{4} \cdot \frac{3}{4} + \frac{3}{4} \cdot \frac{1}{4} = \frac{6}{16}
$$

$$
f(2) = P(TT) = P(T)P(T) = \frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}.
$$

Therefore the probability distribution of X is given as

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>$\frac{9}{16}$</td>
<td>$\frac{6}{16}$</td>
<td>$\frac{1}{16}$</td>
</tr>
</tbody>
</table>

and $\mu = \mu_x = E(x) = \sum_{all\ x} xf(x) = 0 \cdot \frac{9}{16} + 1 \cdot \frac{6}{16} + 2 \cdot \frac{1}{16} = \frac{1}{2}$.

Example 2. If a dealer’s profit in units of $5000, on a new automobile can be looked upon as a random variable X having the density function

$$
f(x) = \begin{cases}
2(1-x), & 0 < x < 1 \\
0, & \text{otherwise}
\end{cases}
$$

Find the average profit per automobile.

$$
\mu = E(x) = \int_{0}^{1} xf(x) dx = \int_{0}^{1} 2x(1-x) dx = \frac{1}{3}. \text{ Thus, } \frac{1}{3} \cdot 5000 = $1666 \text{ is the profit per automobile.}
$$
Example 3. Let X be a random variable with the following probability distribution

<table>
<thead>
<tr>
<th>x</th>
<th>3</th>
<th>6</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>$\frac{1}{6}$</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{3}$</td>
</tr>
</tbody>
</table>

Find $\mu_{g(x)}$, where $g(x) = (2x + 1)^2$.

$$\mu = \mu_{g(x)} = E[g(x)] = \sum_{all\ x} g(x) f(x) = \sum_{all\ x} (2x + 1)^2 f(x) = \frac{1}{2} \cdot \frac{1}{6} + 169 \cdot \frac{1}{2} + 361 \cdot \frac{1}{3} = 217.33$$

Theorem. Let X be a random variable with probability distribution $f(x)$. The mean or expected value of the random variable $g(x)$ is

$$\mu_{g(x)} = E[g(x)] = \sum g(x) f(x(x))$$

if X is discrete and

$$\mu_{g(x)} = E[g(X)] = \int g(x) f(x) dx$$

if X is continuous.

Definition. Let X and Y be random variables with joint probability distribution $f(x, y)$. The mean or expected value of the random variable $g(X, Y)$ is

$$\mu_{g(x,y)} = E[g(X, Y)] = \sum_{x} \sum_{y} g(x, y) f(x, y)$$

if X and Y are discrete, and

$$\mu_{g(x,y)} = E[g(X, Y)] = \int \int g(x, y) f(x, y) dx dy$$

if X and Y are continuous.

Variance and Covariance

The most important measure of variability of a random variable X is obtained by letting $g(x) = (x - \mu)^2$ in the mean formula. Because of its importance in statistics it is referred to as the variance of the random variable X, denoted by $\text{Var}(X)$ or σ^2_X and defined as

$$\text{Var}(X) = \sigma^2_X = E[(X - \mu)^2] = \begin{cases} \sum (x - \mu)^2 f(x), & \text{if } X \text{ is discrete} \\ \int (x - \mu)^2 f(x) dx, & \text{if } X \text{ is continuous} \end{cases}$$

The positive square root of the variance is called the standard deviation (σ_X) of X.
Theorem. The variance of a random variable X is

$$Var(X) = E(X^2) - [E(X)]^2 = E(X^2) - \mu_X^2.$$

Definition. Let X and Y be random variables with joint probability distribution $f(x, y)$. The covariance of X and Y is

$$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$$

$$= \begin{cases}
\sum\sum (x - \mu_X)(y - \mu_Y) f(x, y), & X \text{ and } Y \text{ are discrete} \\
\int\int (x - \mu_X)(y - \mu_Y) f(x, y) dx dy, & X \text{ and } Y \text{ are continuous}
\end{cases}$$

Theorem. If X and Y are independent, then $Cov(X, Y) = 0$. The converse is not always true.

Theorem. The covariance of two random variables X and Y with means μ_X and μ_Y is

$$\sigma_{xy} = E(XY) - E(X)E(Y).$$

Definition. Let X and Y be random variables with covariance σ_{xy} and standard deviations σ_X and σ_Y, respectively. The correlation coefficient X and Y is

$$\rho_{xy} = \frac{\sigma_{xy}}{\sigma_X \sigma_Y}.$$

Example 4. Suppose that X and Y are independent random variables having the joint probability distribution

<table>
<thead>
<tr>
<th>$f(x, y)$</th>
<th>x</th>
<th>1</th>
<th>2</th>
<th>$h(y)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.10</td>
<td>0.15</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>0.30</td>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.10</td>
<td>0.15</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>$g(x)$</td>
<td></td>
<td>0.40</td>
<td>0.60</td>
<td>1</td>
</tr>
</tbody>
</table>

Show that σ_{xy} is zero.

By the above theorem $\sigma_{xy} = E(XY) - E(X)E(Y)$. To compute covariance, we need to find $E(XY)$, $E(X)$ and $E(Y)$.
\[E(XY) = \sum_x \sum_y xyf(x, y) = 2.1(0.10) + 4.1(0.15) + 2.3(0.20) + 4.3(0.30) + 2.5(0.10) + 4.5(0.15) = 9.6 \]

\[E(x) = \sum_x xg(x) = 2(0.40) + 4(0.60) = 3.2 \]

\[E(Y) = \sum_y yh(y) = 1(0.25) + 3(0.50) + 5(0.25) = 3.0 \]

Therefore \(\sigma_{XY} = E(XY) - E(X)E(Y) = 9.6 - (3.2)(3.0) = 0 \).

Example 5. Find the covariance of the random variables \(X \) and \(Y \) having the joint probability density

\[f(x, y) = \begin{cases}
 x + y, & 0 < x < 1, 0 < y < 1 \\
 0, & \text{otherwise}
\end{cases} \]

The Mean and Variance of Linear Combinations of Random Variables

(1) \(E(aX + b) = aE(X) + b, a, b \in \mathbb{R} \)

(2) Let \(X \) and \(Y \) be two random variables, then

\[E(X \pm Y) = E(X) \pm E(Y) \]

(3) If \(X \) and \(Y \) are independent, then

\[E(XY) = E(X)E(Y) \]

(4) If \(a \) and \(b \) are constants, then

\[\sigma_{aX+bY}^2 = \text{Var}(aX + bY) = a^2 \text{Var}(X) + b^2 \text{Var}(Y) + 2ab \text{Cov}(X,Y) = a^2 \sigma_X^2 + b^2 \sigma_Y^2 + 2ab \sigma_{XY} \]

(5) If \(X \) and \(Y \) are independent, then

\[\text{Var}(aX + bY) = a^2 \text{Var}(X) + b^2 \text{Var}(Y) \]

Example 6. If \(X \) and \(Y \) are random variables with variances \(\sigma_X^2 = 2 \) and \(\sigma_Y^2 = 4 \) and covariance \(\sigma_{XY} = -2 \), find the variance of the random variables \(Z = 3X - 4Y + 8 \).
\[Var(Z) = Var(3X - 4Y + 8) \]
\[= 9Var(X) + 16Var(Y) + 23(-4)Cov(X,Y) \]
\[= 9\sigma_X^2 + 16\sigma_Y^2 - 24\sigma_{XY} \]
\[= 9.2 + 16.4 - 24(-2) \]
\[= 130 \]

Example 7. If \(X \) and \(Y \) are independent random variables with variances \(\sigma_X^2 = 5 \) and \(\sigma_Y^2 = 3 \), find the variance of the random variables \(Z = -2X + 4Y - 3 \).

\[Var(Z) = Var(-2X + 4Y - 3) \]
\[= 4Var(X) + 16Var(Y) \]
\[= 4\sigma_X^2 + 16\sigma_Y^2 \]
\[= 4.5 + 16.3 \]
\[= 68 \]

Exercises

Exercise 1. Let \(X \) denote the number of times a certain numerical control machine will malfunction: 1, 2, or 3 time on a given day. Let \(Y \) denote the number of times a technician is called on an emergency call. Their joint probability distribution is given as

<table>
<thead>
<tr>
<th>(f(x,y))</th>
<th>(x)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>2</td>
<td>0.05</td>
<td>0.10</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0.20</td>
</tr>
</tbody>
</table>

Determine the covariance between \(X \) and \(Y \).

Exercise 2. Let \(X \) denote the number of heads and \(Y \) the number of heads minus the number of tails when 3 coins are tossed.

(a) Find the joint probability distribution of \(X \) and \(Y \).
(b) Find the marginal distributions of \(X \) and \(Y \).
(c) Find \(E(X), E(Y) \) and \(E(XY) \)
(d) Determine whether \(X \) and \(Y \) independent or not.

Exercise 3. Find the correlation coefficient between \(X \) and \(Y \) having the joint density function

\[f(x,y) = \begin{cases}
 x + y, & 0 < x < 1, \ 0 < y < 1 \\
 0, & \text{elsewhere}
\end{cases} \]
Exercise 4. Suppose that X and Y are independent random variables with probability densities

$$
g(x) = \begin{cases}
\frac{8}{x^3}, & x > 2 \\
0, & \text{elsewhere}
\end{cases}$$

and

$$
h(y) = \begin{cases}
2y, & 0 < y < 1 \\
0, & \text{elsewhere}
\end{cases}$$

Find the expected value of $Z = XY$.