MATH152 CALCULUS II TUTORIAL - II

(07.10.2016)

Question 1:

Find the values of x for which the series converges.

$$\sum_{n=0}^{\infty} 2\left(\frac{x}{3}\right)^n$$

1.
$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \left| \frac{2(x/3)^{n+1}}{2(x/3)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x}{3} \right|$$

$$= \left| \frac{x}{3} \right|$$

4. For the series to converge:
$$\left|\frac{x}{3}\right| < 1$$

7. For
$$x = -3$$
, the series diverges.

8. Answer:
$$-3 < x < 3$$

Question 2:

Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

$$\sum_{n=0}^{\infty} \frac{x^n}{n!}$$

1.
$$\lim_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n\to\infty} \left| \frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{x}{n+1} \right|$$

4. The series converges for all x.

5. Therefore, the interval of convergence is $-\infty < x < \infty$.

Question 3:

Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(x-5)^n}{n5^n}$$

$$1. \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{(-1)^{n+2} (x-5)^{n+1}}{(n+1)5^{n+1}} \cdot \frac{n5^n}{(-1)^{n+1} (x-5)^n} \right|$$

$$= \lim_{n \to \infty} \left| \frac{n(x-5)}{5(n+1)} \right|$$

3.
$$= \frac{1}{5}|x - 5|$$

4.
$$R = 5$$

5. Center:
$$x = 5$$

6. Interval:
$$-5 < x - 5 < 5$$
 or $0 < x < 10$

7. When
$$x = 0$$
, the *p*-series $\sum_{n=1}^{\infty} \frac{-1}{n}$ diverges.

8. When
$$x = 10$$
, the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$ converges.

9. Therefore, the interval of convergence is $0 < x \le 10$.

Question 4:

Find the interval of convergence of the power series. (Be sure to include a check for convergence at the endpoints of the interval.)

$$\sum_{n=0}^{\infty} (2n)! \left(\frac{x}{2}\right)^n$$

1.
$$\lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{(2n+2)! x^{n+1}}{2^{n+1}} \cdot \frac{2^n}{(2n)! x^n} \right|$$

2.
$$= \lim_{n \to \infty} \left| \frac{(2n+2)(2n+1)x}{2} \right|$$

4. Therefore, the series converges only for x = 0.

Question 5:

Find the Maclaurin polynomial of degree n for the function.

$$f(x) = e^{-x}, \quad n = 3$$

$$1. \quad f(x) = e^{-x}$$

2.
$$f(0) = 1$$

3.
$$f'(x) = -e^{-x}$$

4.
$$f'(0) = -1$$

5.
$$f''(x) = e^{-x}$$

6.
$$f''(0) = 1$$

7.
$$f'''(x) = -e^{-x}$$

8.
$$f'''(0) = -1$$

9.
$$P_3(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3$$

$$10. = 1 - x + \frac{x^2}{2} - \frac{x^3}{6}$$

Question 6:

Find the Maclaurin polynomial of degree n for the function.

$$f(x) = \sin x, \quad n = 5$$

$$1. \quad f(x) = \sin x$$

2.
$$f(0) = 0$$

$$3. \quad f'(x) = \cos x$$

4.
$$f'(0) = 1$$

$$5. \quad f''(x) = -\sin x$$

6.
$$f''(0) = 0$$

$$7. f'''(x) = -\cos x$$

8.
$$f'''(0) = -1$$

9.
$$f^{(4)}(x) = \sin x$$

10.
$$f^{(4)}(0) = 0$$

11.
$$f^{(5)}(x) = \cos x$$

12.
$$f^{(5)}(0) = 1$$

13.
$$P_5(x) = 0 + (1)x + \frac{0}{2!}x^2 + \frac{-1}{3!}x^3 + \frac{0}{4!}x^4 + \frac{1}{5!}x^5$$

14.
$$= x - \frac{1}{6}x^3 + \frac{1}{120}x^5$$

Question 7:

Find the nth Taylor polynomial centered at c.

$$f(x) = \frac{1}{x}$$
, $n = 4$, $c = 1$

$$1. f(x) = \frac{1}{x}$$

2.
$$f(1) = 1$$

3.
$$f'(x) = -\frac{1}{x^2}$$

4.
$$f'(1) = -1$$

5.
$$f''(x) = \frac{2}{x^3}$$

6.
$$f''(1) = 2$$

7.
$$f'''(x) = -\frac{6}{x^4}$$

8.
$$f'''(1) = -6$$

9.
$$f^{(4)}(x) = \frac{24}{x^5}$$

10.
$$f^{(4)}(1) = 24$$

11.
$$P_4(x) = 1 - (x - 1) + \frac{2}{2!}(x - 1)^2 + \frac{-6}{3!}(x - 1)^3$$

$$+\frac{24}{4!}(x-1)^4$$

12.
$$= 1 - (x - 1) + (x - 1)^2 - (x - 1)^3 + (x - 1)^4$$

Question 8:

Find a power series for the function, centered at c, and determine the interval of convergence.

$$f(x) = \frac{3}{x+2}$$
, $c = 0$

1. Writing f(x) in the form a/(1-r), we have

$$\frac{3}{x+2} = \frac{3}{2+x}$$

$$= \frac{3/2}{1 + (1/2)x}$$

3.
$$=\frac{a}{1-r}$$

4. which implies that a = 3/2 and r = (-1/2)x.

5. Therefore, the power series for f(x) is given by

$$\frac{3}{x+2} = \sum_{n=0}^{\infty} ar^n = \sum_{n=0}^{\infty} \frac{3}{2} \left(-\frac{1}{2}x \right)^n$$

6.
$$= 3\sum_{n=0}^{\infty} \frac{(-1)^n x^n}{2^{n+1}}$$

7.
$$=\frac{3}{2}\sum_{n=0}^{\infty}\left(-\frac{x}{2}\right)^n$$
,

- 8. |x| < 2
- 9. or -2 < x < 2.

Question 9:

Use the power series

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$

to determine a power series, centered at 0, for the function. Identify the interval of convergence.

$$f(x) = \ln(x + 1) = \int \frac{1}{1+x} dx$$

- 1. By integrating, we have $\int \frac{1}{x+1} dx = \ln(x+1).$
- 2. Therefore,

$$ln(x+1) = \int \left[\sum_{n=0}^{\infty} (-1)^n x^n \right] dx$$

3.
$$= C + \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1},$$

- 4. $-1 < x \le 1$
- 5. To solve for C, let x = 0 and conclude that C = 0.
- 6. Therefore,

$$\ln(x+1) = \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{n+1},$$

$$-1 < r < 1$$

Question 10:

Use the power series

$$\frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$$

to determine a power series, centered at 0, for the function. Identify the interval of convergence.

$$f(x) = -\frac{1}{(x+1)^2} = \frac{d}{dx} \left[\frac{1}{x+1} \right]$$

1. By taking the first derivative,

we have
$$\frac{d}{dx} \left[\frac{1}{x+1} \right] = \frac{-1}{(x+1)^2}$$

Therefore.

$$\frac{-1}{(x+1)^2} = \frac{d}{dx} \left[\sum_{n=0}^{\infty} (-1)^n x^n \right]$$

3.
$$= \sum_{n=1}^{\infty} (-1)^n n x^{n-1}$$

4.
$$= \sum_{n=0}^{\infty} (-1)^{n+1} (n+1) x^n,$$

5.
$$-1 < x < 1$$
.

Question 11:

Approximating a real number using Taylor polynomials Use polynomials of order n = 0, 1, 2, and 3 to approximate $\sqrt{18}$.

SOLUTION Letting $f(x) = \sqrt{x}$, we choose the center a = 16 because it is near 18, and f and its derivatives are easy to evaluate at 16. The Taylor polynomials have the form

$$p_n(x) = f(16) + f'(16)(x - 16) + \frac{f''(16)}{2!}(x - 16)^2 + \dots + \frac{f^{(n)}(16)}{n!}(x - 16)^n.$$

We now evaluate the required derivatives:

$$f(x) = \sqrt{x} \Rightarrow f(16) = 4$$

$$f'(x) = \frac{1}{2}x^{-1/2} \Rightarrow f'(16) = \frac{1}{8}$$

$$f''(x) = -\frac{1}{4}x^{-3/2} \Rightarrow f''(16) = -\frac{1}{256}$$

$$f'''(x) = \frac{3}{8}x^{-5/2} \Rightarrow f'''(16) = \frac{3}{8192}$$

Therefore, the polynomial p_3 (which includes p_0 , p_1 , and p_2) is

$$p_3(x) = \underbrace{\frac{4}{p_0} + \frac{1}{8}(x - 16)}_{p_1} - \frac{1}{512}(x - 16)^2 + \frac{1}{16,384}(x - 16)^3.$$

Table 9.2		
n	Approximations $p_n(18)$	Absolute Error $ \sqrt{18} - p_n(18) $
0	4	2.43×10^{-1}
1	4.25	7.36×10^{-3}
2	4.242188	4.53×10^{-4}
3	4.242676	3.51×10^{-5}

Question: 12

Find a function represented by the series and give the domain of the function.

$$1 + \frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + \cdot \cdot \cdot$$

1.
$$1 + \frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + \dots = \sum_{n=0}^{\infty} \left(\frac{2x}{3}\right)^n$$

$$= \frac{1}{1 - (2x/3)}$$

3.
$$= \frac{3}{3 - 2x}$$

4.
$$-\frac{3}{2} < x < \frac{3}{2}$$

Question 13

Find the series representation of the function defined by the integral.

$$\int_0^x \frac{\ln(t+1)}{t} \, dt$$

$$\frac{1}{1+t} = \sum_{n=0}^{\infty} (-1)^n t^n$$

$$\ln(1+t) = \int \frac{1}{1+t} dt$$

3.
$$= \sum_{n=0}^{\infty} \frac{(-1)^n t^{n+1}}{n+1}$$

4.
$$\frac{\ln(t+1)}{t} = \sum_{n=0}^{\infty} \frac{(-1)^n t^n}{n+1}$$

5.
$$\int_0^x \frac{\ln(t+1)}{t} dt = \left[\sum_{n=0}^\infty \frac{(-1)^n t^{n+1}}{(n+1)^2} \right]_0^x$$

6.
$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{n+1}}{(n+1)^2}$$

Question 14

Use the series representation of the function f to find $\lim_{x \to \infty} f(x)$ (if it exists).

$$f(x) = \frac{1 - \cos x}{x}$$

1 Since

$$\cos x = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}$$

2.
$$= 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \frac{x^8}{8!} - \cdots$$

3.
$$1 - \cos x = \frac{x^2}{2!} - \frac{x^4}{4!} + \frac{x^6}{6!} - \frac{x^8}{8!} + \cdots$$

4.
$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+2}}{(2n+2)!}$$

5.
$$\frac{1-\cos}{x} = \frac{x}{2!} - \frac{x^3}{4!} + \frac{x^5}{6!} - \frac{x^7}{8!} + \cdots$$

6.
$$= \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+2)!}$$

7. we have
$$\lim_{x \to 0} \frac{1 - \cos x}{x} = \lim_{x \to 0} \sum_{n=0}^{\infty} \frac{(-1)x^{2n+1}}{(2n+2)!}$$

$$8. = 0.$$