MATH152 CALCULUS I

TUTORIAL -l

Question 1:

Find the values of x for which the series converges.
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I, For the series to converge: <1

A = —3 < x< i
6. For x = 3, the series diverges.

For x = =3, the series diverges.
5 Answer: —3 < x < 3

Question 2 :

Find the interval of convergence of the power series.
(Be sure to include a check for convergence at the
endpoints of the interval.)
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4. The series converges for all x.

5. Therefore, the interval of convergence is
-0 <X < o
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Question 3 :

Find the interval of convergence of the power series.
(Be sure to include a check for convergence at the
endpoints of the interval.)
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5. Center: x =5

O, Imterval: =5 < x =5 <500 <ux< 10
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. When x = 0, the p-series E — diverges,
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5. When x = 10, the alternating series E o

n=1

CONVETZES.,

4. Therefore, the interval of converzence is 0 < x £ 10,

Question 4 :

Find the interval of convergence of the power series.
(Be sure to include a check for convergence at the
endpoints of the interval.)
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4. Therefore, the series converges only for x = (0.



Question 5 : Question 7 :

Find the Maclaurin polynomial of degree n for Find the nth Taylor polynomial centered at ¢.

the function. 1
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the function.
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Question 8:

Find a power series for the function, centered at ¢,
and determine the interval of convergence.
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5. Therefore, the power series for f{x) is given by
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Question 9:

Use the power series
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to determine a power series, centered at 0, for the
function. Identify the interval of convergence.
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I. By integrating, we have j . _:_ dx = In(x + 1).
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5. To solve for C, let x = 0 and conclude that C = 0.
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Question 10:

Use the power series
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to determine a power series, centered at 0, for the
function. Identify the interval of convergence.
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Question 11:

Approximating a real number using Taylor polynomials Use poly-
nomials of order n = 0, 1, 2, and 3 to approximate V18,

SOLUTION Letting f(x) = 4/, we choose the center @ = 16 because it is near 18, and f
and its derivatives are casy to evaluate at 16. The Taylor polynomials have the form

£09, 4.+ L08

p(x) = f(16) + f'(16)(x -

(x = 16).

We now evaluate the required derivatives:
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Question 14

Table 9.2
n  Approximations p,(18)  Absolute Error | V18 — p,(18)]
(1] 4 243 X 107! Use the series representation of the function f to find
1 425 736 X 107 |'i_'|;l;l]f(_l‘) (if it exists).
2 4242188 453 % 107 ‘
3 4242676 351 X 107 flo) = L C08x
X
. Since
guestion : 12 [_ |)er..'|
cosx =
. ,,E,, {2n)!
! PN
Find a function represented by the series and give the - a6 8
domain of the function. 24 s
IR DUV RN AUNE B
s 4 3 B TR TR TR
I+ Sx+ xf 4 a4+ - ant2
3 9 2-? N _ -} [_ ”ux.Jrl
' & (2n + 20
2 4 E = z.x o ] —_— i . 3 -5 )
Ll+Sx+-+_—xt+-. = (— 5, — S X X E_X
30 27 "2,, 3 T n w e s
I 6 _ [_I ”.x'”l 1
7 we have lim 95X _ i (1
3 _ 3 - we fave g x T & (2n + 2)
3, —
3 - 8. =0
_3 3
- > <N < 3
Question 13

Find the series representation of the function defined by
the integral.
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